Расчёт отопления в многоквартирном доме: нормы и формулы расчетов для домов со счетчиком и без
Содержание:
- Отопительные приборы
- Простейший способ расчета
- Выбор котлов для отопления частного дома
- Исходные данные для расчета
- Расчет отопительной системы
- Влияние способов подключения и места установки на теплоотдачу радиаторов
- Расчет трубы для теплого пола
- Последовательность шагов расчета
- Расчёт радиаторов
- Гидравлический расчёт водоснабжения
- Как рассчитать оптимальную мощность отопительных приборов
Отопительные приборы
Как рассчитать отопление в частном доме для отдельных помещений и подобрать соответствующие этой мощности отопительные приборы?
Сама методика расчета потребности в тепле для отдельной комнаты полностью идентична приведенной выше.
К примеру, для комнаты площадью 12 м2с двумя окнами в описанном нами доме расчет будет иметь такой вид:
- Объем комнаты равен 12*3,5=42 м3.
- Базовая тепловая мощность будет равной 42*60=2520 ватт.
- Два окна добавят к ней еще 200. 2520+200=2720.
- Региональный коэффициент увеличит потребность в тепле вдвое. 2720*2=5440 ватт.
Как пересчитать полученное значение в количество секций радиатора? Как подобрать количество и тип отопительных конвекторов?
Производители всегда указывают тепловую мощность для конвекторов, пластинчатых радиаторов и т.д. в сопроводительной документации.
Таблица мощности для конвекторов VarmannMiniKon.
- Для секционных радиаторов необходимую информацию обычно можно найти на сайтах дилеров и производителей. Там же нередко можно обнаружить калькулятор для пересчета киловатт в секции.
- Наконец, если вы используете секционные радиаторы неизвестного происхождения, при их стандартном размере в 500 миллиметров по осям ниппелей можно ориентироваться на следующие усредненные значения:
Тип секции | Тепловая мощность на одну секцию, ватты |
Чугунная с внутренним оребрением | 160 |
Чугунная без внутреннего оребрения | 140 |
Биметаллическая | 180 |
Алюминиевая | 200 |
В автономной отопительной системе с ее умеренными и предсказуемыми параметрами теплоносителя чаще всего используются алюминиевые радиаторы. Их разумная цена очень приятным образом сочетается с пристойным внешним видом и высокой теплоотдачей.
В нашем случае алюминиевых секций мощностью 200 ватт потребуется 5440/200=27 (с округлением).
Разместить в одной комнате столько секций – нетривиальная задача.
Как всегда, есть пара тонкостей.
- При боковом подключении многосекционного радиатора температура последних секций куда ниже, чем первых; соответственно, падает тепловой поток от отопительного прибора. Решить проблему поможет простая инструкция: подключайте радиаторы по схеме “снизу вниз”.
- Производители указывают тепловую мощность для дельты температур между теплоносителем и помещением в 70 градусов (например, 90/20С). При ее снижении тепловой поток будет падать.
Особый случай
Нередко в качестве отопительных приборов в частных домах используются самодельные стальные регистры.
Прямо скажем – не верх эстетики.
Тем не менее: как оценить тепловую мощность регистра известного размера?
Для одиночной горизонтальной круглой трубы она вычисляется по формуле вида Q = Pi*Dн *L * k * Dt, в которой:
- Q – тепловой поток;
- Pi – число “пи”, принимаемое равным 3,1415;
- Dн – наружный диаметр трубы в метрах;
- L – ее длина (тоже в метрах);
- k – коэффициент теплопроводности, который берется равным 11,63 Вт/м2*С;
- Dt – дельта температур, разница между теплоносителем и воздухом в комнате.
В многосекционном горизонтальном регистре теплоотдача всех секций, кроме первой, умножается на 0,9, поскольку они отдают тепло восходящему потоку нагретого первой секцией воздуха.
В многосекционном регистре нижняя секция отдает больше всего тепла.
Давайте вычислим теплоотдачу четырехсекционного регистра с диаметром секции 159 мм и длиной 2,5 метра при температуре теплоносителя 80 С и температуре воздуха в комнате 18 С.
- Теплоотдача первой секции равна 3,1415*0,159*2,5*11,63*(80-18)=900 ватт.
- Теплоотдача каждой из остальных трех секций равна 900*0,9=810 ватт.
- Суммарная тепловая мощность отопительного прибора – 900+(810*3)=3330 ватт.
Простейший способ расчета
Этот способ расчёта в интернете рекомендуют чаще других. Проще, надо полагать, действительно не придумать.
Исходят из того, что для полноценного отопления жилья с высотой потолков в пределах 2,5÷3,0 метра и достаточно качественной термоизоляцией всех основных конструкций, необходимо затратить 100 ватт тепловой энергии на каждый один квадратный метр площади помещения.
100 Вт на 1 м² — многие считают именно так, хотя получающийся результат порой очень далек от истинного
В качестве «производной» от подобного подхода можно рассматривать «норму» и исходя от объёма помещения.
— Так, в частном доме с качественным утеплением и современными окнами со стеклопакетами можно считать их соотношения 34 Вт тепловой энергии на каждый кубометр объёма.
— В панельном доме городской массовой застройки тепла потребуется больше – 41 ватт на кубометр.
Просто и быстро! Считаем по площади (или объему) необходимое количество тепла для каждого помещения. А затем суммирование всех результатов даст нам общую тепловую мощность, которая требуется для отопления дома. К ней можно добавить порядка 20 или 25% эксплуатационного запаса – и ответ готов!
Действительно, несложно. Но насколько это точно?
Даже человеку, весьма далекому от строительства и теплотехники, может показаться подозрительной уж слишком высокая «универсальность» подобного метода. Согласитесь, одно дело проводить расчет отопительной системы для дома, скажем, в Ханты-Мансийске, и другое – для такого же по площади, но на Кубани. Ни слова не говорится о количестве и качестве окон, а ведь это – одна из основных «магистралей» утечки тепла из помещений. Не принимаются в расчет состояние системы утепления, тип перекрытий, то, с чем соседствует помещение по горизонтали и вертикали. И многое другое …
В результате таких расчетов вполне могут получиться две крайности:
- Одна очень неприятная, когда система отопления попросту не справляется со своими обязанностями.
- Другая – это избыточная мощность приобретённого и установленного оборудования, которая практически всегда остается невостребованной. А это – лишние затраты на более дорогие модели мощных котлов, на большее количество радиаторов. Да и не особо полезно для техники, когда она постоянно работает с очень большой «недогрузкой».
Выполненные с чрезмерно большими погрешностями расчеты могут привести с неэффективности создаваемой системы отопления
Одним словом, назвать такой подход рациональным – сложно. И рачительный хозяин все же предпочтет более точные вычисления.
Выбор котлов для отопления частного дома
Отопительные приборы, которые использует схема системы отопления дома, могут быть следующих видов:
- Ребристые или конвективные;
- Радиационно-конвективные;
- Радиационные. Радиационные отопительные приборы редко используются для организации отопительной системы в частном доме.
Современные котлы обладают характеристиками, которые приведены в следующей таблице:
Когда осуществляется расчет отопления в деревянном доме, данная таблица может вам в некоторой степени помочь. При монтаже отопительных приборов нужно соблюдать некоторые требования:
- Расстояние от отопительного прибора до пола должно составлять не меньше, чем 60 мм. Благодаря такому расстоянию домашнее отопление схема позволит провести уборку в труднодоступном месте.
- Расстояние от прибора отопления до подоконника должно быть минимум в 50 мм, чтобы радиатор в случае чего можно было без проблем снять.
- Ребра приборов отопления должны быть расположены в вертикальном положении.
- Желательно отопительные приборы монтировать под окнами или возле окон.
- Центр прибора отопления должен совпадать с центром окна.
Если в одной комнате находится несколько отопительных приборов, то они должны быть расположены на одном и том же уровне.
Исходные данные для расчета
Для правильного расчета теплопотерь через пол, крышу, стены, окна, двери необходимо обращаться к квалифицированным строителям. При подсчетах учитываются:
- Площадь и планировка здания, состав помещений – количество ванных, детских, вспомогательных и буферных помещений.
- Материал стен, потолка, фундамента.
- Утепление дома, перекрытий и фундамента.
- Конструктив и отделка стен определяет кратность воздухообмена и потери тепла на нагрев воздуха, поступающего при вентиляции помещения.
- Количество, площадь и конструкция окон и дверей.
- Этажность здания, наличие цокольного этажа, гаража или подвала, конструктив второго этажа (мансарда или полноценный этаж).
- Климат региона (средние и минимальные зимние температуры).
- Количество людей, проживающих в доме.
- Наличие дополнительных систем отопления и источников тепла (печей, каминов, радиаторной системы).
Расчет отопительной системы
При планировании отопительной системы для частного дома наиболее сложным и ответственным этапом является проведение гидравлических расчетов – нужно определить сопротивление системы отопления.
Ведь, берясь самостоятельно как рассчитать объем системы отопления, так и далее планировать систему, мало кто знает, что предварительно необходимо произвести некоторые графически-проектные работы. В частности, следует определить и отобразить на плане отопительной системы такие параметры:
тепловой баланс помещений, в которых будут расположены отопительные приборы;
тип наиболее подходящих отопительных приборов и теплообменных поверхностей, указать их на предварительном плане отопительной системы;
наиболее подходящий тип отопительной системы, подобрать наиболее подходящую конфигурацию. Также следует создать подробную схему расположения нагревательного котла, трубопровода.
выбрать тип трубопровода, определить необходимые для качественной работы дополнительные элементы (вентили, клапаны, датчики). Указать на предварительной схеме системы их расположение.
создать полную аксонометричную схему. В ней следует указать номера участков, их продолжительность и уровень тепловой нагрузки.
спланировать и отобразить на схеме основной отопительный контур
При этом важно учесть максимальный расход теплоносителя.
Принципиальная схема отопления
Двухтрубная отопительная система
Для любой отопительной системы расчетным участком трубопровода является тот сегмент, диаметр на котором не изменяется и где происходит стабильный расход теплоносителя. Последний параметр вычисляется из теплового баланса помещения.
Для расчета двухтрубной системы отопления следует провести предварительную нумерацию участков. Начинается она с нагревательного элемента (котла). Все узловые точки подающей магистрали, в которых происходит разветвление системы, необходимо отмечать заглавными буквами.
Двухтрубная отопительная система
Соответственные узлы, расположенные на сборных магистральных трубопроводах, следует обозначать черточками. Места ответвления приборных веток (на узловом стояке) чаще всего обозначаются арабскими цифрами. Эти обозначения соответствуют номеру этажа (в случае, если внедрена горизонтальная отопительная система) или номеру стояка (вертикальная система). При этом в месте соединения потока теплоносителя данный номер обозначается дополнительным штрихом.
Для максимально качественного выполнения работы следует нумеровать каждый участок
При этом важно учитывать, что номер должен состоять из двух значений – начала и конца участка
Влияние способов подключения и места установки на теплоотдачу радиаторов
При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.
Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.
Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.
Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.
Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.
Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.
Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.
В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:
- Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
- Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
- Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.
Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.
Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.
Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.
Расчет трубы для теплого пола
В среднем, на 1 м2 необходимо 5 погонных метров трубы. Этот способ является более легким в определении того, сколько нужно трубы на м2 для обустройства теплого пола. При таком расчете длина шага составляет 20 см. Определить необходимое количество трубы можно с помощью формулы: L = S / N * 1,1, где:
- S – площадь помещения.
- N – Шаг укладки.
- 1,1 – запас трубы на повороты.
При расчетах также необходимо добавить количество метров от пола до коллектора и назад. Пример:
- Площадь пола (полезная площадь): 15 м2;
- Расстояние от пола до коллектора: 4 м;
- Шаг укладки теплого пола: 15 см. (0,15м.);
- Расчеты: 15 / 0,15 * 1,1 + (4 * 2) = 118 м.
Последовательность шагов расчета
Говоря о расчете системы отопления, отмечаем что эта процедура является наиболее неоднозначной и важной в части проектирования. Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
- установить тепловой баланс во всех и конкретно каждой комнаты квартиры;
- одобрать терморегуляторы, клапаны и регуляторы давления;
- выбрать радиаторы, теплообменные поверхности, теплоотдающие панели;
- определить участки системы с максимальным и минимальным расходом носителя тепла.
Кроме того, надо определить общую схему транспортировки теплоносителя: полный и малый контур, однотрубная система или двухтрубная магистраль.
В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:
- какая должна быть мощность источника отопления;
- какой расход и скорость теплоносителя;
- какой нужен диаметр основной магистрали теплового трубопровода;
- какие возможные потери теплоты и самой массы теплоносителя.
Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.
Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы
Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.
Расчёт радиаторов
В нашем случае мы будем использовать стандартные алюминиевые радиаторы высотой 0,6 м. Мощность каждого ребра такого радиатора при температуре 70 °С составляет 150 Вт. Далее мы посчитаем мощность каждого радиатора и количество условных рёбер:
- комната 1: 28 м3 · 40 Вт · 1,2 = 1344 Вт. Округляем до 1500 и получаем 10 условных рёбер, но поскольку у нас два радиатора, оба под окнами, мы возьмём один с 6-ю рёбрами, второй с 4-мя.
- комната 2: 28 м3 · 40 Вт · 1,2 = 1344 Вт. Округляем до 1500 и получаем один радиатор с 10-ю рёбрами.
- комната 3: 56 м3 · 40 Вт · 1,2 = 2688 Вт Округляем до 2700 и получаем три радиатора: 1-й и 2-й по 5 рёбер, 3-й (боковой) — 8 рёбер.
- прихожая: 22,4 м3 · 40 Вт · 1,2 = 1075,2 Вт. Округляем до 1200 и получаем два радиатора по 4 ребра.
- ванная: 11,2 м3 · 45 Вт · 1,2 = 600 Вт. Тут температура должна быть немного выше, получается 1 радиатор с 4-мя рёбрами.
- туалет: 8,4 м3 · 40 Вт · 1,2 = 403,2 Вт. Округляем до 450 и получаем три ребра.
- кухня: 43,4 м3 · 40 Вт · 1,2 = 2083,2 Вт. Округляем до 2100 и получаем два радиатора по 7 рёбер.
В конечном результате мы видим, что нам необходимо 12 радиаторов общей мощностью:
900 + 600 + 1500 + 750 + 750 + 1200 + 600 + 600 + 600 + 450 + 1050 + 1050 = 10,05 кВт
Исходя из последних расчётов, видно, что наша индивидуальная система отопления без проблем справится с возложенной на неё нагрузкой.
Гидравлический расчёт водоснабжения
Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.
Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла – это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей
Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.
Объём горячей воды в отопительной системе рассчитывается по формуле:
W=k*P, где
- W – объём носителя тепла;
- P – мощность котла отопления;
- k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).
В итоге конечная формула выглядит так:
W = 13.5*P
Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.
Эта величина помогает оценить тип и диаметр трубопровода:
V=(0.86*P*μ)/∆T, где
- P – мощность котла;
- μ – КПД котла;
- ∆T – разница температур между подаваемой водой и водой обратном контуре.
Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.
Как рассчитать оптимальную мощность отопительных приборов
Самый простой метод расчета необходимой мощности основывается на том, что для обогрева квадратного метра требуется потратить 100 Вт тепла. То есть на комнату в 10 м 2 нужны обогреватели суммарной мощностью в 1 кВт. Другой подход оценивает требуемую мощность, исходя из объема помещения. В усредненном случае берут 41 Вт на м 3 .
Такой подход к расчету мощности отопительных приборов усреднен и для многих случаев дает неточный результат, приводящий к лишним затратам. Ведь при таком расчете не учитываются:
- конкретные климатические условия;
- размеры окон, которые вполне могут занимать всю стену;
- использование энергосберегающих технологий, например, утеплителя или тройных стеклопакетов и так далее.
Точный расчет с учетом всех особенностей конкретного здания и его теплопотерь выполняется на основе сводов правил СП 60.13330.2020 «Отопление, вентиляция и кондиционирование воздуха СНиП 41-01-2003» и СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1)». В этом случае учитываются все данные по конкретному объекту и выполняется расчет необходимой мощности для него.
Максимально близкий результат, учитывающий основные характеристики здания, можно получить при расчете тепловой мощности по формуле:
- Q — требуемая мощность отопления;
- S — площадь помещения;
- К1 — коэффициент, учитывающий теплопотери через окна. Величина К1 выбирается равной 1 для двойного стеклопакета, 0,85 — для тройного, 1,27 — для одинарного;
- К2 — коэффициент, учитывающий наличие теплоизоляции здания. Он выбирается равным 1 — для кладки в два кирпича; 0,854 — при наличии дополнительной теплоизоляции и 1,27 — при незначительной теплоизоляции;
- К3 — коэффициент, учитывающий размеры окон и их соотношение с площадью помещения в процентах. При соотношении 50% выбирается равным 1,2, для 40% — 1,1, для 30% — 1, для 20% — 0,9, для 10% — 0,8;
- К4 — коэффициент, учитывающий климатические условия. При минимальных температурах — 35 0 С выбирается равным 1,5. При — 25 0 С — 1,3; при -20 0 С — 1,1; при — 15 0 С — 0,9; при — 10 0 С — 0,7;
- К5 — коэффициент, учитывающий количество стен, выходящих на улицу и, соответственно, теплопотери через них. Для четырех стен он берется равным 1,4, для трех — 1,3, для двух — 1,2, для одной — 1,1;
- К6 — коэффициент, учитывающий степень теплоизоляции помещения, находящегося выше расчетного. Он выбирается равным 1, если выше находится крыша или чердак, 0,9 — при наличии выше утепленного, но не отапливаемого помещения и 0,8 — если выше расположена квартира в многоквартирном доме или другие комнаты, то есть отапливаемое помещение;
- К7 — коэффициент, учитывающий высоту помещения. Он выбирается равным 1 для комнат с потолками на высоте 2,5 м, 1,05 — на высоте 3 м, 1,1 — на высоте 3,5 м, 1,15 — на высоте 4 м и 1,2 — для высоты в 4,5 м.
В дальнейшем надо разделить полученное значение на мощность одного выбранного вами отопительного прибора и округлить результат в большую сторону.
Расчет необходимой мощности отопления по такой формуле позволяет учесть большую часть факторов и получить качественный результат. Таким образом вы получите количество отопительных приборов, необходимое для одного помещения.
Обратите внимание, что расчет следует выполнять для каждого помещения отдельно, собственно как и для разных категорий техники. Например энергопотребление кухонной техники уже рассчитывается немного по-другому