Выпрямитель, схема диодного моста

Схемы выпрямителей

Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

Чтобы не было путаницы, давайте разбираться в терминологии.

Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

Обозначение и маркировка

Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

Виды и характеристики

Современная промышленность выпускает различные по конструкции и характеристикам устройства. Все выпрямительные мосты разделяют на два вида: монолитные и наборные. Первые выполняются в цельном диэлектрическом корпусе, наподобие микросхемы, и имеют четыре вывода. Форма их корпуса может быть прямоугольной, квадратной, цилиндрической. При этом тип корпуса может быть также любым, например, SOT 23, MDI, SDIP, SMD.

На корпусе обычно подписываются полярные ноги символами + и —, соответствующие выходному сигналу. Входные же выводы могут не подписываться или обозначаться знаком тильды ~. Вторые же представляют собой четыре отдельных диода, запаянных по схеме моста, чаще всего в специально отведённые для них места на плате.

При работе выпрямительный мост может нагреваться, поэтому некоторые конструкции предполагают их совместное использование с радиатором. Как и любой электрический прибор, мост характеризуется рядом параметров:

  1. Наибольшее обратное напряжение, В — характеризуется максимальным значением напряжения, приложенного при обратном включении диодов, подача которого на прибор не приводит к его повреждению. Превышение этого значения вызывает пробой, то есть полупроводник превращается в проводник.
  2. Действующее напряжение, В — определяется среднеквадратичным значением амплитуды входного сигнала.
  3. Максимальный ток, А — это величина, определяющая наибольшую мощность, которую может потреблять нагрузка, подключённая к прибору.
  4. Максимальное падение напряжения, В — этот параметр обозначает потери мощности сигнала на элементе, то есть фактически характеризует эффективность прибора. Потери мощности связаны с активным внутренним сопротивлением устройства, на котором электрическая энергия преобразуется в тепловую.
  5. Интервал рабочих температур, С — обозначает диапазон, в котором характеристики устройства практически не изменяются.

Вам это будет интересно Расчет сопротивления контура заземления в частных домах

Кроме этого, в зависимости от типа используемых диодов устройства могут быть высокочастотными и импульсными. Первые используются в цепях с высокочастотным электричеством. Диоды, на базе которых собирается конструкция, называются Шотки. В них вместо классического p-n перехода используется контакт металл-полупроводник. Вторые же являются обычными выпрямителями.

Выпрямление электроэнергии

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Где купить и сколько стоит блок питания 12 V

Они продаются в магазинах бытовой электроники, офисной техники, а также в организациях, специализирующихся на их ремонте. Кроме этого, в интернете также есть предложения различных компаний, предлагающих к реализации БП различной направленности.

Блок питания DC-12V, 20.8А, 250 Вт в водонепроницаемом корпусе, степень защиты − IP67

Стоимость БП зависит от их технических характеристик и типа исполнения, определяющих возможность использования этого устройства. Чем выше мощность и степень защиты – тем больше цена. Она может составлять от нескольких сотен до нескольких тысяч рублей. Наиболее дешёвые модели:

  • ARDV-05-12A (12V, 0,4A, 5W) – 200 рублей;
  • ARDV-12-12AW (12V, 1A, 12W) – 300 рублей;
  • ARDV-24-12A (12V, 2A, 24W) – 400 рублей.

Модели в следующем сегменте:

  • APS-100L-12BM (12V, 8.3A, 100W) – 800 рублей;
  • APS-150-12BM (12V, 12.5A, 150W) – 1 000 рублей;
  • APS-250-12BM (12V, 20.8A, 250W) – 1 400 рублей.

Наличие большого количества предложений на рынке вспомогательных устройств для бытовой техники и приборов позволяет выбрать блок питания в соответствии с предъявляемыми к нему требованиям. А наличие в свободном доступе различных схем, а также электронных компонентов позволяет изготовить БП своими руками даже начинающему любителю электроники, имеющему начальные навыки работы с паяльником.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”

Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение. Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже

Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения

Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт. Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

Особенности проверки

контактыконтактыДля проведения комплексной проверки диодного моста достаточно двух инструментов — цифрового комбинированного прибора (мультиметра) и лампочки с номинальным напряжением 12 Вольт. Все работы реально сделать самостоятельно, без привлечения дорогостоящих мастеров. Чтобы получить доступ к узлу, снимайте защитный корпус, после чего отключайте вывода регулятора. При этом учитывайте цветовые особенности диодов:

  • Выпрямители красного цвета — «плюс».
  • Выпрямители черного цвета — «минус».

Проверить целостность диодов на ВАЗ можно двумя способами. Для большей надежности рекомендуется их применять в комплексе.

Сначала рассмотрим, как проверить диодный мост мультиметром. Этот вариант занимает меньше всего времени и пользуется наибольшим спросом у автовладельцев. Алгоритм следующий:

  • Демонтируйте группу выпрямителей с генератора. Без снятия устройства с автомобиля выполнить проверку, к сожалению, не выйдет. Это вызвано тем, что каждый диод требуется проверять по отдельности. Если же они будут «в схеме», точно диагностировать поломку вряд ли удастся.
  • Переводите переключатель цифрового прибора в режим прозвонки. После этого соединяйте щупы друг с другом — вы услышите писк из специального динамика устройства. Если вы используете простой прибор, в котором эта опция не предусмотрена, переводите переключатель в позицию «1кОм».
  • «Садитесь» щупами к вводу и выводу диода, после чего фиксируйте показатель. Далее сделайте обратный замер. Выпрямитель можно считать целым, если при одном измерении показало бесконечность, а при другом — 0,5-0,7 МОм. В случае когда в обоих случаях на приборе высветилось минимальное сопротивление, или же он показывает бесконечность в первом и во втором варианте, это сигнализирует о неисправности одного (группы) диодов.

Теперь рассмотрим, как проверить диодный мост лампочкой? Такой вариант хорош в случае, когда под рукой нет мультиметра. Роль «прибора» в этом случае выполняет лампочка на 12 Вольт.

Алгоритм такой:

  • Подключайте «минусовую» клемму аккумулятора к диодному мосту. При этом следите, чтобы пластинка плотно контактировала с внешней частью генератора.
  • Проверьте каждый диод по отдельности. Берите один вывод лампы и подключайте его к «минусу» генератора, а второй — к «плюсу» клеммы под номером «тридцать» (от АКБ). Если лампочка засветилась, это говорит о проблемах с одним или несколькими диодами. Кроме того, свечение часто свидетельствует о наличии КЗ в цепи.
  • Проверьте «минусовые» диоды. Для этого подсоединяйте «минус» лампочки к кожуху генератора, а другой провод — к крепежному болту на мосту. Если при такой проверке имеет место моргание или свечение лампы, с «минусовой» группой имеются проблемы.
  • Проверьте «плюсовые» диоды. Для этого положительный вывод ставьте на «тридцатую» клемму, а отрицательный — к крепежному болту. Свечения лампы быть не должно. Если же такая проблема имеет место, имеют место сбои в одном или нескольких «плюсовых» диодах.
  • Проверьте дополнительную группу выпрямителей. Берите отрицательный край и оставляйте его на прежней позиции, а положительный конец прикладывайте к клемме «шестьдесят один». Свечение лампочки сигнализирует о наличии проблемы.

Если проверка диодного моста показала неисправность, берите пробитый диод и ставьте на его место новую (исправную) деталь. Оптимальный и более простой вариант — приобрести весь диодный мост в комплексе, но в этом случае придется потратить больше денег.

При соблюдении упомянутых выше рекомендаций диагностика неисправности занимает не больше 1-2 часов. Так что не стоит торопиться на СТО — сделайте работу своими руками. Так удается набраться опыта и сэкономить личный бюджет.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

Навигация по записям

8 thoughts on “ Диодный мост схема, принцип работы ”

Как будет выглядеть синусоида, при полключении двух фаз?

Вопрос на засыпку. Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле. Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так. Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?

Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.

Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.

Если бы было замыкание был бы бабах, а его не и все работает только криво.

сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?

Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В). Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения. Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.

Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).

Выпрямительный мост своими руками

Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:

  1. Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
  2. Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
  3. Прямое напряжение. Величина падения напряжения на открытом диоде.
  4. Граничная частота. Частота переменного тока, на которой прибор еще может работать.

При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.

Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):

  • Д226 — 400 В, 0,3 А, 1 кГц;
  • КД204А — 400 В, 0,4 А, 50 кГц;
  • КД201А — 100 В, 5 А, 1,1 кГц;
  • Д247 — 500 В, 10 А, 1 кГц.

Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.

Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.

Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.

Использование барьера Шоттки

Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.

Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.

Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.

Originally posted 2018-07-04 08:35:05.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector